COMBAT CLOUD – Next Generation C2

By Chris McInnes

AMCL7856_2
(Andrew McLaughlin)

Most readers will have heard or read discussions about the ‘combat cloud’.

Like the white fluffy things from which its named is derived, the combat cloud can seem to be an ethereal thing – composed mostly of vapour and not necessarily establishing solid foundations upon which to build. That is a shame, particularly for the Australian Defence Force and Australia’s defence industry, because combat clouds are potentially a critical element in Australia’s realisation of a truly integrated force that can genuinely punch above its weight.

So, how do we define what a combat cloud is? Borrowing from its commercial progenitor, the combat cloud conveys a system in which data is pooled and is available from this via a number of different means. The essence of the ‘cloud’ notion in combat cloud is that a user is not dependent upon information being pushed to them via a specific means; they are connected to the cloud via whatever means they have at their disposal, and can pull data they are authorised to see as and when necessary.

This aspect is only part of the story though. The combat cloud terminology may suffer from being an idea that is a little before its time, as the more recent notion of an ‘internet of things’ is a more appropriate descriptor for what people seem to be trying to achieve with the combat cloud. The combat cloud is not just about smoothing the passage of information in the way that Dropbox or iCloud does for its users.

Instead, the concept of the combat cloud is about sharing information and resources across a networked force in a manner than allows the information and resources – sensors, weapons, processors, and deciders – to be optimised for the task at hand. This is more akin to a combat internet of things than a combat cloud, because a user can control and exploit resources anywhere on the network, not merely access the information available on the network.

AMCL9453_2
(Andrew McLaughlin)

Much is made of the F-35A’s own and multi-ship fusion capabilities that enhance its ability to locate, identify, and track targets. This is indeed impressive, but the combat cloud allows this fusion effort to be scaled up exponentially. Instead of the data collected by the F-35A’s sensors being processed solely onboard, it can also be pooled with information from the E-7A Wedgetail, Hobart-class DDG, EA-18G Growler, MQ-4C Triton, Jindalee Over-the-Horizon-Radar (JORN), and orbital sensors, and then processed in server racks onboard a nearby orbiting KC-30A tanker to generate a high-fidelity multi-source track.

The combat cloud concept matters for the ADF because it has the potential to enhance a small force’s lethality, survivability, resilience, and efficiency. The combat cloud has the power to enhance the ADF’s potency by allowing engagement at greater ranges, using a greater array of weapon systems from potentially unexpected aspects. Physics dictates that an aircraft can only carry a limited number of missiles of a certain size, and that the more missiles the aircraft carries, the larger its signature becomes and the less distance it can travel.

But in a combat cloud, the aircraft is not dependent upon the weapons it carries. Instead, it can call for fires from weapons on any of the platforms available in the network.

In this instance, an F-35A called on land-based long-range surface-to-air missiles (SAM) to engage targets far beyond the horizon of the ship’s own sensors. The SAM battery’s crew, coordinating via datalink with the F-35A formation, swap the explosive warheads on several missiles for a microwave attack system designed to disable electronic systems and arrange to fire two salvoes. The first salvo of explosive and microwave weapons is fired, intended to disrupt the enemy strike package.

Meanwhile, a second salvo of weapons flies to programmed waypoints to await updated targeting information from the F-35A. The first salvo does its work and the second salvo, approaching from a different aspect, targets remaining high value targets thanks to updated information from the on-scene F-35A. The enemy’s inbound strike package had no idea what hit them. There were no emissions until aircraft started exploding or falling out of the sky with malfunctioning electronics.

In many ways, it was the combat cloud that hit them because the combat cloud had enabled crumbs of information from multiple sources to be fused into robust tracks. Aside from low probably of intercept/low probability of detection datalink transmissions, neither HMAS Hobart nor the F-35A force emitted at all during this engagement.

The F-35A’s targeting data was derived from its own impressive onboard systems but was also fused – in server racks onboard a KC-30A refuelling a pair of Growlers – with sensor information from offboard systems. This was important as the F-35A force had detected the incoming enemy aircraft minutes earlier but could not identify them without giving away their own presence.

The cloud’s resilience had also been on show. The processing performed onboard the KC-30A was usually done in server rooms located in Canberra via satellite communications. But a Carrington Event the year before this story had disrupted most satellite communications. Enemy counter-space operations leading up to the attempted strike had compounded earlier problems. But due to the combat cloud, commanders had been able to divert processing power from routine activities towards the fusion of fragments of information from numerous sources to derive a sufficiently clear picture. The only element of this that had been ‘by design’ was the flexibility in the system to rapidly re-orient.

Efficiency had also been optimised due to the combat cloud. HMAS Hobart’s long-range SAMs were closer to the inbound strikers, but the cloud had recommended to the area air defence commander aboard an E-7A Wedgetail that the DDG’s weapons be preserved for defence of the amphibious task group she was escorting. Besides, the upgrades to allow HMAS Hobart’s crew to swap out warheads were not due to come online until next year, and the enemy’s single axis formation presented an opportunity to disable multiple targets with a limited number of non-kinetic payloads.

The efficiency had also been apparent in the cloud’s optimisation of sensor allocation. Instead of the Wedgetail’s MESA radar radiating continuously, the cloud’s processing had identified the few targets that other sensors had been unable to identify and directed pulses of the MESA radar onto those targets, and those targets only, until they were identified sufficiently.

Moreover, the smarts of the combat cloud allowed the battery commander to launch dumb weapons, preserving her active radar-homing missiles for subsequent missions. The fidelity and granularity with which the combat cloud could resolve targets, and the assuredness with which weapons could be guided to the target via a variety of data links, meant the weapons themselves could simply do as they were told until impact.

This key breakthrough had enabled the rapid warhead swap as the missile’s payload would not interfere with a delicate guidance system.

171024-N-KT595-448 PACIFIC OCEAN (Oct. 24, 2017) An SM-2 missile launches and destroys an airborne training target during a successful first test of the updated AEGIS Baseline 9 weapons system aboard the guided-missile cruiser USS Mobile Bay (CG 53). Mobile Bay is the first guided-missile cruiser in the fleet to upgrade from AEGIS Baseline 8 to the updated Baseline 9, and is underway testing new weapons capabilities in preparation for its upcoming deployment. (U.S Navy Photo by Mass Communication Specialist 1st Class Chad M. Butler/Released)
(US Navy)

Of course, most of the above is fiction. The ADF will have a HMAS Hobart, F-35A, and land-based SAMs, but otherwise this is a made-up story. But it does not need to be.

This fictional combat cloud vignette illustrates why the combat cloud is more than an easily accessible data swamp, and why it offers such potential for the ADF’s realisation of an integrated force. Like its real-world namesake, the combat cloud presents an outside observer with a seemingly unified and impenetrable mass, with untold latent potential. This is precisely why Peter Layton felt the combat cloud was “perhaps better named a ‘combat thunderstorm’, hurling destructive lightning bolts from any part of the cumulonimbus.”

The ADF and its industry partners have a unique opportunity to drive towards a combat cloud. The ADF’s highly capable mix of USAF, USN, and bespoke equipment on a relatively small scale means it is well placed to tackle the challenges of integrating weapons systems with fundamentally different, and often hostile DNA. Proprietary, security, and other regulatory controls on information sharing must be overcome.

However, this presents an opportunity for Australian industry to present itself as an impartial broker, one that can potentially find a way to bridge the divides that arise between industry primes’ valuable intellectual property, the need for security, and government’s desire to control the release of sensitive information.

In an insightful study on battle network competition in the twentieth century, the US-based Center for Budgetary and Strategy Assessment identified that as competitions went on, the rate of change accelerated until the fundamental character of the competition was disrupted.

Realising the combat cloud’s vision is essential if the ADF and its partners are to realise and maintain comparative advantage. A combat cloud that delays or precludes the integration of a new sensor, weapon, processor, or algorithm due to integration delays, is the combat cloud that the enemy in our scenario possessed.

The results speak for themselves.

Wing Commander Chris McInnes is a serving officer in the Royal Australian Air Force, and is the Co-Editor of the Sir Richard Williams Foundation’s ‘The Central Blue’ blog. He holds a Bachelor’s Degree in History, Politics and Management from UNSW Australia; completed the Australian Command and Staff Course (Joint) in Military and Strategic Leadership at the Australian Defence College; and holds a Master’s Degree in Military and Defence Studies from the Australian National University.
This feature article appeared in the March-April 2018 issue of ADBR.
AMCL9545_2

(Andrew McLaughlin)